Atomic quantum gases in Kagomé lattices.
نویسندگان
چکیده
We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such a quantum spin liquid employing molecular Bose condensates.
منابع مشابه
Magnetic correlations in the Hubbard model on triangular and Kagomé lattices.
In order to study the magnetic properties of frustrated metallic systems, we present, for the first time, quantum Monte Carlo data on the magnetic susceptibility of the Hubbard model on triangular and kagomé lattices. We show that the underlying lattice structure determines the nature and the doping dependence of the magnetic fluctuations. In particular, in the doped kagomé case we find strong ...
متن کاملOptical flux lattices for ultracold atomic gases.
We show that simple laser configurations can give rise to "optical flux lattices," in which optically dressed atoms experience a periodic effective magnetic flux with high mean density. These potentials lead to narrow energy bands with nonzero Chern numbers. Optical flux lattices will greatly facilitate the achievement of the quantum Hall regime for ultracold atomic gases.
متن کاملA glimpse of quantum phenomena in optical lattices.
Optical lattices in cold atomic systems offer an excellent setting for realizing quantum condensed matter phenomena. Here, a glimpse of such a setting is provided for the non-specialist. Some basic aspects of cold atomic gases and optical lattices are reviewed. Quantum many-body physics is explored in the case of interacting bosons on a lattice. Quantum behaviour in the presence of a potential ...
متن کاملUltracold quantum gases in optical lattices
Ultracold bosonic and fermionic quantum gases are versatile and robust systems for probing fundamental condensed-matter physics problems1–12, as well as fi nding applications in quantum optics and quantum information processing13 and understanding atomic and molecular physics14,15. Storing such ultracold quantum gases in artifi cial periodic potentials of light has opened innovative manipulatio...
متن کاملStructural distortions of frustrated quantum spin lattices in high magnetic fields
We study the stability of some strongly frustrated antiferromagnetic spin lattices in high magnetic fields against lattice distortions. In particular, we consider a spin-s anisotropic Heisenberg antiferromagnet on the square-kagomé and kagomé lattices. The independent localized magnons embedded in a ferromagnetic environment, which are the ground state at the saturation field, imply lattice ins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2004